## Lesson 8: Linear Equations in Disguise

## Classwork

## Example 3

Can this equation be solved?

$$
\frac{6+x}{7 x+\frac{2}{3}}=\frac{3}{8}
$$

## Example 4

Can this equation be solved?

$$
\frac{7}{3 x+9}=\frac{1}{8}
$$

## Example 5

In the diagram below, $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$. Using what we know about similar triangles, we can determine the value of $x$.


## Exercises

Solve the following equations of rational expressions, if possible.

1. $\frac{2 x+1}{9}=\frac{1-x}{6}$
2. $\frac{5+2 x}{3 x-1}=\frac{6}{7}$
3. $\frac{x+9}{12}=\frac{-2 x-\frac{1}{2}}{3}$
4. $\frac{8}{3-4 x}=\frac{5}{2 x+\frac{1}{4}}$

## Lesson Summary

Some proportions are linear equations in disguise and are solved the same way we normally solve proportions.
When multiplying a fraction with more than one term in the numerator and/or denominator by a number, put the expressions with more than one term in parentheses so that you remember to use the distributive property when transforming the equation. For example:

$$
\begin{aligned}
\frac{x+4}{2 x-5} & =\frac{3}{5} \\
5(x+4) & =3(2 x-5)
\end{aligned}
$$

The equation $5(x+4)=3(2 x-5)$ is now clearly a linear equation and can be solved using the properties of equality.

## Problem Set

Solve the following equations of rational expressions, if possible. If an equation cannot be solved, explain why.

1. $\frac{5}{6 x-2}=\frac{-1}{x+1}$
2. $\frac{4-x}{8}=\frac{7 x-1}{3}$
3. $\frac{3 x}{x+2}=\frac{5}{9}$
4. $\frac{\frac{1}{2} x+6}{3}=\frac{x-3}{2}$
5. $\frac{2 x+5}{2}=\frac{3 x-2}{6}$
6. $\frac{6 x+1}{3}=\frac{9-x}{7}$
7. $\frac{\frac{1}{3} x-8}{12}=\frac{-2-x}{15}$
8. $\frac{3-x}{1-x}=\frac{3}{2}$
9. $\frac{7-2 x}{6}=\frac{x-5}{1}$
10. In the diagram below, $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$. Determine the lengths of $\overline{A C}$ and $\overline{B C}$.

