Lesson 5: First Consequences of FTS

Classwork

Exercise 1

In the diagram below, points P and Q have been dilated from center O by scale factor $r . \overline{P Q} \| \overline{P^{\prime} Q^{\prime}},|P Q|=5 \mathrm{~cm}$, and $\left|P^{\prime} Q^{\prime}\right|=10 \mathrm{~cm}$.

a. Determine the scale factor r.
b. Locate the center O of dilation. Measure the segments to verify that $\left|O P^{\prime}\right|=r|O P|$ and $\left|O Q^{\prime}\right|=r|O Q|$. Show your work below.

Exercise 2

In the diagram below, you are given center O and ray $\overrightarrow{O A}$. Point A is dilated by a scale factor $r=4$. Use what you know about FTS to find the location of point A^{\prime}.

Exercise 3

In the diagram below, you are given center O and ray $\overrightarrow{O A}$. Point A is dilated by a scale factor $r=\frac{5}{12}$. Use what you know about FTS to find the location of point A^{\prime}.

Lesson Summary

Converse of the fundamental theorem of similarity:
If lines $P Q$ and $P^{\prime} Q^{\prime}$ are parallel and $\left|P^{\prime} Q^{\prime}\right|=r|P Q|$, then from a center $O, P^{\prime}=\operatorname{Dilation}(P), Q^{\prime}=\operatorname{Dilation}(Q)$, $\left|O P^{\prime}\right|=r|O P|$, and $\left|O Q^{\prime}\right|=r|O Q|$.
To find the coordinates of a dilated point, we must use what we know about FTS, dilation, and scale factor.

Problem Set

1. Dilate point A, located at $(3,4)$ from center O, by a scale factor $r=\frac{5}{3}$.

What is the precise location of point A^{\prime} ?
2. Dilate point A, located at $(9,7)$ from center O, by a scale factor $r=\frac{4}{9}$. Then, dilate point B, located at $(9,5)$ from center O, by a scale factor of $r=\frac{4}{9}$. What are the coordinates of points A^{\prime} and B^{\prime} ? Explain.

3. Explain how you used the fundamental theorem of similarity in Problems 1 and 2.

