# **Lesson 5: Negative Exponents and the Laws of Exponents**

### Classwork

**Definition:** For any nonzero number x, and for any positive integer n, we define  $x^{-n}$  as  $\frac{1}{x^n}$ . Note that this definition of negative exponents says  $x^{-1}$  is just the reciprocal,  $\frac{1}{x}$ , of x. As a consequence of the definition, for a nonnegative x and all *integers b*, we get

$$x^{-b} = \frac{1}{x^b}$$

#### Exercise 1

Verify the general statement  $x^{-b} = \frac{1}{x^b}$  for x = 3 and b = -5.

# Exercise 2

What is the value of  $(3 \times 10^{-2})$ ?



Negative Exponents and the Laws of Exponents





Lesson 5

8•1



### **Exercise 3**

What is the value of  $(3 \times 10^{-5})$ ?

# **Exercise 4**

Write the complete expanded form of the decimal 4.728 in exponential notation.

For Exercises 5–10, write an equivalent expression, in exponential notation, to the one given, and simplify as much as possible.

| Exercise 5 | Exercise 6        |
|------------|-------------------|
| $5^{-3} =$ | $\frac{1}{8^9} =$ |

| Exercise 7         | Exercise 8                   |
|--------------------|------------------------------|
| $3 \cdot 2^{-4} =$ | Let $x$ be a nonzero number. |
|                    | $x^{-3} =$                   |

# **Exercise 9**

**Exercise 10** 

Let x be a nonzero number.

 $\frac{1}{x^9} =$ 

Let *x*, *y* be two nonzero numbers.

# $xy^{-4} =$



Negative Exponents and the Laws of Exponents







| We accept that for nonzero numbers $x$ and $y$ and all integers $a$ and $b$ , |                                                |                                        |  |
|-------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------|--|
| $x^a \cdot x^b = x^{a+b}$                                                     |                                                |                                        |  |
| $(x^b)^a = x^{ab}$                                                            |                                                |                                        |  |
| $(xy)^a = x^a y^a.$                                                           |                                                |                                        |  |
| We claim                                                                      |                                                |                                        |  |
|                                                                               | $\frac{x^a}{x^b} = x^{a-b}$                    | for all integers <i>a</i> , <i>b</i> . |  |
|                                                                               | $\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}$ | for any integer <i>a</i> .             |  |
|                                                                               |                                                |                                        |  |

| Exercise 11           | Exercise 12                 |
|-----------------------|-----------------------------|
| $\frac{19^2}{19^5} =$ | $\frac{17^{16}}{17^{-3}} =$ |

# Exercise 13

If we let b = -1 in (11), a be any integer, and y be any nonzero number, what do we get?

### Exercise 14

Show directly that  $\left(\frac{7}{5}\right)^{-4} = \frac{7^{-4}}{5^{-4}}$ .



Negative Exponents and the Laws of Exponents





Lesson 5 8•1

### **Problem Set**

- 1. Compute:  $3^3 \times 3^2 \times 3^1 \times 3^0 \times 3^{-1} \times 3^{-2} =$ Compute:  $5^2 \times 5^{10} \times 5^8 \times 5^0 \times 5^{-10} \times 5^{-8} =$ Compute for a nonzero number,  $a: a^m \times a^n \times a^l \times a^{-n} \times a^{-m} \times a^{-l} \times a^0 =$
- 2. Without using (10), show directly that  $(17.6^{-1})^8 = 17.6^{-8}$ .
- 3. Without using (10), show (prove) that for any whole number *n* and any positive number *y*,  $(y^{-1})^n = y^{-n}$ .
- 4. Without using (13), show directly without using (13) that  $\frac{2.8^{-5}}{2.8^7} = 2.8^{-12}$ .



Negative Exponents and the Laws of Exponents



