Lesson 4: Numbers Raised to the Zeroth Power

Classwork

We have shown that for any numbers x, y, and any positive integers m, n, the following holds

$$
\begin{align*}
& x^{m} \cdot x^{n}=x^{m+n} \tag{1}\\
& \left(x^{m}\right)^{n}=x^{m n} \tag{2}\\
& (x y)^{n}=x^{n} y^{n} . \tag{3}
\end{align*}
$$

Definition: \qquad

Exercise 1

List all possible cases of whole numbers m and n for identity (1). More precisely, when $m>0$ and $n>0$, we already know that (1) is correct. What are the other possible cases of m and n for which (1) is yet to be verified?

Exercise 2

Check that equation (1) is correct for each of the cases listed in Exercise 1.

Exercise 3

Do the same with equation (2) by checking it case-by-case.

Exercise 4

Do the same with equation (3) by checking it case-by-case.

Exercise 5

Write the expanded form of 8,374 using exponential notation.

Exercise 6

Write the expanded form of $6,985,062$ using exponential notation.

Problem Set

Let x, y be numbers $(x, y \neq 0)$. Simplify each of the following expressions.

1. $\frac{y^{12}}{y^{12}}=$	2. $9^{15} \cdot \frac{1}{9^{15}}=$
3. $\left(7(123456.789)^{4}\right)^{0}=$	4. $2^{2} \cdot \frac{1}{2^{5}} \cdot 2^{5} \cdot \frac{1}{2^{2}}=\frac{2^{2}}{2^{2}} \cdot \frac{2^{5}}{2^{5}}$
5. $\frac{x^{41}}{y^{15}} \cdot \frac{y^{15}}{x^{41}}=\frac{x^{41} \cdot y^{15}}{y^{15} \cdot x^{41}}$	

