# Lesson 23: True and False Number Sentences

## Classwork

#### **Opening Exercise**

Determine what each symbol stands for, and provide an example.

| Symbol | What the Symbol Stands For | Example |
|--------|----------------------------|---------|
| =      |                            |         |
| >      |                            |         |
| <      |                            |         |
| ≤      |                            |         |
| 2      |                            |         |

## Example 1

For each equation or inequality your teacher displays, write the equation or inequality, and then substitute 3 for every x. Determine if the equation or inequality results in a true number sentence or a false number sentence.







#### **Exercises**

Substitute the indicated value into the variable, and state (in a complete sentence) whether the resulting number sentence is true or false. If true, find a value that would result in a false number sentence. If false, find a value that would result in a true number sentence.

1. 4 + x = 12. Substitute 8 for *x*.

2. 3g > 15. Substitute  $4\frac{1}{2}$  for g.

3. 
$$\frac{f}{4}$$
 < 2. Substitute 8 for  $f$ .

4.  $14.2 \le h - 10.3$ . Substitute 25.8 for *h*.

5. 
$$4 = \frac{8}{h}$$
. Substitute 6 for *h*.

6. 
$$3 > k + \frac{1}{4}$$
. Substitute  $1\frac{1}{2}$  for *k*.









- 7. 4.5 d > 2.5. Substitute 2.5 for *d*.
- 8.  $8 \ge 32p$ . Substitute  $\frac{1}{2}$  for p.

9.  $\frac{w}{2}$  < 32. Substitute 16 for *w*.

10.  $18 \le 32 - b$ . Substitute 14 for *b*.







#### **Lesson Summary**

NUMBER SENTENCE: A number sentence is a statement of equality (or inequality) between two numerical expressions.

**TRUTH VALUES OF A NUMBER SENTENCE:** A number sentence is said to be *true* if both numerical expressions evaluate to the same number; it is said to be *false* otherwise. True and false are called *truth values*.

Number sentences that are inequalities also have truth values. For example, 3 < 4, 6 + 8 > 15 - 12, and  $(15 + 3)^2 < 1,000 - 32$  are all true number sentences, while the sentence 9 > 3(4) is false.

# **Problem Set**

Substitute the value into the variable, and state (in a complete sentence) whether the resulting number sentence is true or false. If true, find a value that would result in a false number sentence. If false, find a value that would result in a true number sentence.

1. 
$$3\frac{5}{6} = 1\frac{2}{3} + h$$
. Substitute  $2\frac{1}{6}$  for *h*.

2. 
$$39 > 156g$$
. Substitute  $\frac{1}{4}$  for  $g$ .

3. 
$$\frac{f}{4} \leq 3$$
. Substitute 12 for  $f$ .

4.  $121 - 98 \ge r$ . Substitute 23 for r.

5. 
$$\frac{54}{q} = 6$$
. Substitute 10 for  $q$ .

Create a number sentence using the given variable and symbol. The number sentence you write must be true for the given value of the variable.

| 6. | Variable: d | Symbol: $\geq$ | The sentence is true when 5 is substituted for $d$ .    |
|----|-------------|----------------|---------------------------------------------------------|
| 7. | Variable: y | Symbol: ≠      | The sentence is true when $10$ is substituted for $y$ . |
| 8. | Variable: k | Symbol: <      | The sentence is true when $8$ is substituted for $k$ .  |
| 9. | Variable: a | Symbol: $\leq$ | The sentence is true when 9 is substituted for $a$ .    |



