Lesson 5: Exponents

Classwork

Opening Exercise

As you evaluate these expressions, pay attention to how you arrived at your answers.
$4+4+4+4+4+4+4+4+4+4$
$9+9+9+9+9$
$10+10+10+10+10$

Examples 1-10

Write each expression in exponential form.

1. $5 \times 5 \times 5 \times 5 \times 5=$
2. $2 \times 2 \times 2 \times 2=$

Write each expression in expanded form.
3. $8^{3}=$
4. $10^{6}=$
5. $g^{3}=$

Go back to Examples 1-4, and use a calculator to evaluate the expressions.
What is the difference between $3 g$ and g^{3} ?
6. Write the expression in expanded form, and then evaluate.
$(3.8)^{4}=$
7. Write the expression in exponential form, and then evaluate.
$2.1 \times 2.1=$
8. Write the expression in exponential form, and then evaluate.
$0.75 \times 0.75 \times 0.75=$

The base number can also be a fraction. Convert the decimals to fractions in Examples 7 and 8 and evaluate. Leave your answer as a fraction. Remember how to multiply fractions! MATH
9. Write the expression in exponential form, and then evaluate.
$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=$
10. Write the expression in expanded form, and then evaluate.
$\left(\frac{2}{3}\right)^{2}=$

Exercises

1. Fill in the missing expressions for each row. For whole number and decimal bases, use a calculator to find the standard form of the number. For fraction bases, leave your answer as a fraction.

Exponential Form	Expanded Form	Standard Form
3^{2}	3×3	9
	$2 \times 2 \times 2 \times 2 \times 2 \times 2$	
4^{5}	$\frac{3}{4} \times \frac{3}{4}$	
	1.5×1.5	

2. Write five cubed in all three forms: exponential form, expanded form, and standard form.
3. Write fourteen and seven-tenths squared in all three forms.
4. One student thought two to the third power was equal to six. What mistake do you think he made, and how would you help him fix his mistake?

Lesson Summary

EXponential notation for whole number exponents: Let m be a nonzero whole number. For any number a, the expression a^{m} is the product of m factors of a, i.e.,

$$
a^{m}=\underbrace{a \cdot a \cdot \cdots \cdot a}_{m \text { times }} .
$$

The number a is called the base, and m is called the exponent or power of a.
When m is 1 , "the product of one factor of a " just means a (i.e., $a^{1}=a$). Raising any nonzero number a to the power of 0 is defined to be 1 (i.e., $a^{0}=1$ for all $a \neq 0$).

Problem Set

1. Complete the table by filling in the blank cells. Use a calculator when needed.

Exponential Form	Expanded Form	Standard Form
3^{5}	$4 \times 4 \times 4$	
$(1.9)^{2}$		
$\left(\frac{1}{2}\right)^{5}$		

2. Why do whole numbers raised to an exponent get greater, while fractions raised to an exponent get smaller?
3. The powers of 2 that are in the range 2 through 1,000 are $2,4,8,16,32,64,128,256$, and 512 . Find all the powers of 3 that are in the range 3 through 1,000.
4. Find all the powers of 4 in the range 4 through 1,000 .
5. Write an equivalent expression for $n \times a$ using only addition.
6. Write an equivalent expression for w^{b} using only multiplication.
a. Explain what w is in this new expression.
b. Explain what b is in this new expression.
7. What is the advantage of using exponential notation?
8. What is the difference between $4 x$ and x^{4} ? Evaluate both of these expressions when $x=2$.
