

Lesson 11: Perimeters and Areas of Polygonal Regions Defined by Systems of Inequalities

Classwork

Opening Exercise

Graph the following:

a. $y \leq 7$

c. $y < \frac{1}{2}x - 4$

EUREKA MATH

Lesson 11:

Example 1

A parallelogram with base of length b and height h can be situated in the coordinate plane, as shown. Verify that the shoelace formula gives the area of the parallelogram as bh.

Example 2

A triangle with base b and height h can be situated in the coordinate plane, as shown. According to Green's theorem, what is the area of the triangle?

GEOMETRY

M4

Lesson 11

Exercises

1. A quadrilateral region is defined by the system of inequalities below:

	$y \le x + 6$	$y \le -2x + 12$	$y \ge 2x - 4$	$y \ge -x + 2$	
a.	Sketch the region.		}	 ·	
b.	Determine the vertices of the quadrilateral.				
c.	Find the perimeter of the quadrilatera	nuadrilateral region		 	
		4444			

- d. Find the area of the quadrilateral region.
- 2. A quadrilateral region is defined by the system of inequalities below:

	$y \le x + 5$	$y \ge x - 4$	$y \le 4$	$y \ge -\frac{5}{4}x - 4$	
a.	Sketch the region.				
b.	Determine the vertices of th	etermine the vertices of the quadrilateral.			
c.	Which quadrilateral is defin you prove your conclusion?	ed by these inequalities? Ho	w can		

- d. Find the perimeter of the quadrilateral region.
- e. Find the area of the quadrilateral region.

Lesson 11:

Problem Set

For Problems 1–2 below, identify the system of inequalities that defines the region shown.

For Problems 3–5 below, a triangular or quadrilateral region is defined by the system of inequalities listed.

- a. Sketch the region.
- b. Determine the coordinates of the vertices.
- c. Find the perimeter of the region rounded to the nearest hundredth if necessary.
- d. Find the area of the region rounded to the nearest tenth if necessary.

3.	$8x - 9y \ge -22$	$x + y \le 10$	$5x - 12y \le -1$	
4.	$x + 3y \ge 0$	$4x - 3y \ge 0$	$2x + y \le 10$	
5.	$2x - 5y \ge -14$	$3x + 2y \le 17$	$2x - y \le 9 \qquad \qquad x + y \ge$	<u>≥</u> 0

EUREKA MATH

Lesson 11:

