

Lesson 6: Segments That Meet at Right Angles

Classwork

Opening Exercise

Carlos thinks that the segment having endpoints A(0,0) and B(6,0) is perpendicular to the segment with endpoints A(0,0) and C(-2,0). Do you agree? Why or why not?

Working with a partner, given A(0,0) and B(3,-2), find the coordinates of a point C so that $\overline{AC} \perp \overline{AB}$.

Example

Given points A(2,2), B(10,16), C(-3,1), and D(4,-3), are \overline{AB} and \overline{CD} perpendicular? Are the lines containing the segments perpendicular? Explain.

Segments That Meet at Right Angles

Exercises

1. Given $A(a_1, a_2)$, $B(b_1, b_2)$, $C(c_1, c_2)$, and $D(d_1, d_2)$, find a general formula in terms of $a_1, a_2, b_1, b_2, c_1, c_2, d_1$, and d_2 that will let us determine whether \overline{AB} and \overline{CD} are perpendicular.

- 2. Recall the Opening Exercise of Lesson 4 in which a robot is traveling along a linear path given by the equation y = 3x 600. The robot hears a ping from a homing beacon when it reaches the point F(400,600) and turns to travel along a linear path given by the equation $y 600 = -\frac{1}{3}(x 400)$. If the homing beacon lies on the x-axis, what is its exact location? (Use your own graph paper to visualize the scenario.)
 - a. If point *E* is the *y*-intercept of the original equation, what are the coordinates of point *E*?
 - b. What are the endpoints of the original segment of motion?
 - c. If the beacon lies on the *x*-axis, what is the *y*-value of this point, *G*?
 - d. Translate point F to the origin. What are the coordinates of E', F', and G'?
 - e. Use the formula derived in this lesson to determine the coordinates of point *G*.

Segments That Meet at Right Angles

3. A triangle in the coordinate plane has vertices A(0,10), B(-8,8), and C(-3,5). Is it a right triangle? If so, at which vertex is the right angle? (Hint: Plot the points, and draw the triangle on a coordinate plane to help you determine which vertex is the best candidate for the right angle.)

4. A(-7,1), B(-1,3), C(5,-5), and D(-5,-5) are vertices of a quadrilateral. If \overline{AC} bisects \overline{BD} , but \overline{BD} does not bisect \overline{AC} , determine whether ABCD is a kite.

Problem Set

- 1. Are the segments through the origin and the points listed perpendicular? Explain.
 - a. *A*(9,10), *B*(10,9)
 - b. *C*(9,6), *D*(4,−6)
- 2. Given M(5,2), N(1,-4), and L listed below, are \overline{LM} and \overline{MN} perpendicular? Translate M to the origin, write the coordinates of the images of the points, and then explain without using slope.
 - a. *L*(-1,6)
 - b. *L*(11,−2)
 - c. *L*(9,8)
- 3. Is triangle PQR, where P(-7,3), Q(-4,7), and R(1,-3), a right triangle? If so, which angle is the right angle? Justify your answer.
- 4. A quadrilateral has vertices $(2 + \sqrt{2}, -1)$, $(8 + \sqrt{2}, 3)$, $(6 + \sqrt{2}, 6)$, and $(\sqrt{2}, 2)$. Prove that the quadrilateral is a rectangle.
- 5. Given points G(-4,1), H(3,2), and I(-2,-3), find the *x*-coordinate of point *J* with *y*-coordinate 4 so that the \overleftarrow{GH} and \overrightarrow{IJ} are perpendicular.
- 6. A robot begins at position (-80,45) and moves on a path to (100,-60). It turns 90° counterclockwise.
 - a. What point with *y*-coordinate 120 is on this path?
 - b. Write an equation of the line after the turn.
 - c. If it stops to charge on the *x*-axis, what is the location of the charger?
- 7. Determine the missing vertex of a right triangle with vertices (6,2) and (5,5) if the third vertex is on the *y*-axis. Verify your answer by graphing.
- 8. Determine the missing vertex for a rectangle with vertices (3, -2), (5,2), and (-1,5), and verify by graphing. Then, answer the questions that follow.
 - a. What is the length of the diagonal?
 - b. What is a point on both diagonals in the interior of the figure?
- 9. Leg \overline{AB} of right triangle ABC has endpoints A(1,3) and B(6,-1). Point C(x, y) is located in Quadrant IV.
 - a. Use the perpendicularity criterion to determine at which vertex the right angle is located. Explain your reasoning.
 - b. Determine the range of values that *x* is limited to and why.
 - c. Find the coordinates of point *C* if they are both integers.

Segments That Meet at Right Angles

S.27