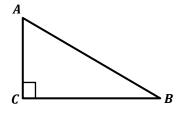
M4

GEOMETRY

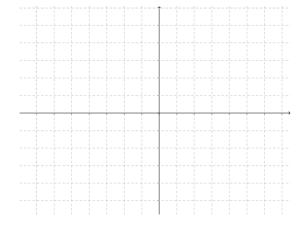

Lesson 5: Criterion for Perpendicularity

Classwork

Opening Exercise

In right triangle ABC, find the missing side.

a. If AC = 9 and CB = 12, what is AB? Explain how you know.

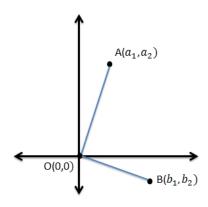


b. If AC = 5 and AB = 13, what is CB?

c. If AC = CB and AB = 2, what is AC (and CB)?

Exercise 1

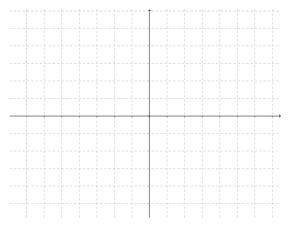
- 1. Use the grid on the right.
 - a. Plot points O(0,0), P(3,-1), and Q(2,3) on the coordinate plane.
 - b. Determine whether \overline{OP} and \overline{OQ} are perpendicular. Support your findings.


Lesson 5:

Criterion for Perpendicularity

GEOMETRY

Example 2


Exercises 2-3

2. Given points O(0,0), A(6,4), B(24,-6), C(1,4), P(2,-3), S(-18,-12), T(-3,-12), U(-8,2), and W(-6,9), find all pairs of segments from the list below that are perpendicular. Support your answer. \overline{OA} , \overline{OB} , \overline{OC} , \overline{OP} , \overline{OS} , \overline{OT} , \overline{OU} , and \overline{OW}

(ce) BY-NC-SA

GEOMETRY

3. The points O(0,0), A(-4,1), B(-3,5), and C(1,4) are the vertices of parallelogram OABC. Is this parallelogram a rectangle? Support your answer.

(ce) BY-NC-SA

GEOMETRY

Problem Set

- 1. Prove using the Pythagorean theorem that \overline{AC} is perpendicular to \overline{AB} given points A(-2, -2), B(5, -2), and C(-2,22).
- 2. Using the general formula for perpendicularity of segments through the origin and (90,0), determine if \overline{OA} and \overline{OB} are perpendicular.
 - a. A(-3, -4), B(4,3)
 - b. A(8,9), B(18,-16)
- 3. Given points O(0,0), S(2,7), and T(7,-2), where \overline{OS} is perpendicular to \overline{OT} , will the images of the segments be perpendicular if the three points O, S, and T are translated four units to the right and eight units up? Explain your answer.
- 4. In Example 1, we saw that \overline{OA} was perpendicular to \overline{OB} for O(0,0), A(6,4), and B(-2,3). Suppose we are now given the points P(5,5), Q(11,9), and R(3,8). Are segments \overline{PQ} and \overline{PR} perpendicular? Explain without using triangles or the Pythagorean theorem.
- 5. Challenge: Using what we learned in Exercise 2, given points $C(c_1, c_2)$, $A(a_1, a_2)$, and $B(b_1, b_2)$, what is the general condition of a_1 , a_2 , b_1 , b_2 , c_1 , and c_2 that ensures \overline{CA} and \overline{CB} are perpendicular?
- 6. A robot that picks up tennis balls is on a straight path from (8,6) toward a ball at (-10,-5). The robot picks up a ball at (-10,-5) and then turns 90° right. What are the coordinates of a point that the robot can move toward to pick up the last ball?
- 7. Gerry thinks that the points (4,2) and (-1,4) form a line perpendicular to a line with slope 4. Do you agree? Why or why not?

(cc) BY-NC-SA

Criterion for Perpendicularity

Lesson 5: