

Lesson 7: How Do Dilations Map Segments?

Classwork

Opening Exercise

a. Is a dilated segment still a segment? If the segment is transformed under a dilation, explain how.

b. Dilate the segment PQ by a scale factor of 2 from center O.

How Do Dilations Map Segments?

S.48

i. Is the dilated segment P'Q' a segment?

ii. How, if at all, has the segment PQ been transformed?

Example 1

Case 1. Consider the case where the scale factor of dilation is r = 1. Does a dilation from center O map segment PQ to a segment P'Q'? Explain.

Example 2

Case 2. Consider the case where a line PQ contains the center of the dilation. Does a dilation from the center with scale factor $r \neq 1$ map the segment PQ to a segment P'Q'? Explain.

S.49

0

R

R

Example 3

Case 3. Consider the case where \overrightarrow{PQ} does not contain the center O of the dilation, and the scale factor r of the dilation is not equal to 1; then, we have the situation where the key points O, P, and Q form $\triangle OPQ$. The scale factor not being equal to 1 means that we must consider scale factors such that 0 < r < 1 and r > 1. However, the proofs for each are similar, so we focus on the case when 0 < r < 1.

When we dilate points P and Q from center O by scale factor 0 < r < 1, as shown, what do we know about points P' and Q'?

Putting together the preliminary dilation theorem for segments with the dilation theorem, we get

DILATION THEOREM FOR SEGMENTS: A dilation $D_{0,r}$ maps a line segment PQ to a line segment P'Q' sending the endpoints to the endpoints so that P'Q' = rPQ. Whenever the center O does not lie in line PQ and $r \neq 1$, we conclude $\overrightarrow{PQ} \mid |\overrightarrow{P'Q'}|$. Whenever the center O lies in \overrightarrow{PQ} or if r = 1, we conclude $\overrightarrow{PQ} = \overrightarrow{P'Q'}$.

As an aside, observe that a dilation maps parallel line segments to parallel line segments. Further, a dilation maps a directed line segment to a directed line segment that points in the same direction.

Example 4

Now look at the converse of the dilation theorem for segments: If \overline{PQ} and \overline{RS} are line segments of different lengths in the plane, then there is a dilation that maps one to the other if and only if $\overline{PQ} = \overline{RS}$ or $\overline{PQ} \mid \mid \overline{RS}$.

Based on Examples 2 and 3, we already know that a dilation maps a segment PQ to another line segment, say \overline{RS} , so that $\overrightarrow{PQ} = \overrightarrow{RS}$ (Example 2) or $\overrightarrow{PQ} \mid \mid \overrightarrow{RS}$ (Example 3). If $\overrightarrow{PQ} \mid \mid \overrightarrow{RS}$, then, because \overline{PQ} and \overline{RS} are different lengths in the plane, they are bases of a trapezoid, as shown.

Since \overline{PQ} and \overline{RS} are segments of different lengths, then the non-base sides of the trapezoid are not parallel, and the lines containing them meet at a point O as shown.

Recall that we want to show that a dilation maps \overline{PQ} to \overline{RS} . Explain how to show it.

The case when the segments \overline{PQ} and \overline{RS} are such that $\overleftarrow{PQ} = \overleftarrow{RS}$ is left as an exercise.

Exercises 1–2

In the following exercises, you will consider the case where the segment and its dilated image belong to the same line, that is, when \overline{PQ} and \overline{RS} are such that $\overrightarrow{PQ} = \overleftarrow{RS}$.

1. Consider points P, Q, R, and S on a line, where P = R, as shown below. Show there is a dilation that maps \overline{PQ} to \overline{RS} . Where is the center of the dilation?

2. Consider points P, Q, R, and S on a line as shown below where $PQ \neq RS$. Show there is a dilation that maps \overline{PQ} to \overline{RS} . Where is the center of the dilation?

S.52

Lesson Summary

- When a segment is dilated by a scale factor of r = 1, then the segment and its image would be the same length.
- When the points P and Q are on a line containing the center, then the dilated points P' and Q' are also collinear with the center producing an image of the segment that is a segment.
- When the points *P* and *Q* are not collinear with the center and the segment is dilated by a scale factor of $r \neq 1$, then the point *P'* lies on the ray *OP'* with *OP'* = $r \cdot OP$, and *Q'* lies on ray *OQ* with *OQ'* = $r \cdot OQ$.

Problem Set

1. Draw the dilation of parallelogram *ABCD* from center *O* using the scale factor r = 2, and then answer the questions that follow.

- a. Is the image A'B'C'D' also a parallelogram? Explain.
- b. What do parallel lines seem to map to under a dilation?
- 2. Given parallelogram *ABCD* with A(-8,1), B(2,-4), C(-3,-6), and D(-13,-1), perform a dilation of the plane centered at the origin using the following scale factors.
 - a. Scale factor $\frac{1}{2}$
 - b. Scale factor 2
 - c. Are the images of parallel line segments under a dilation also parallel? Use your graphs to support your answer.

- 3. In Lesson 7, Example 3, we proved that a line segment PQ, where O, P, and Q are the vertices of a triangle, maps to a line segment P'Q' under a dilation with a scale factor r < 1. Using a similar proof, prove that for O not on \overrightarrow{PQ} , a dilation with center O and scale factor r > 1 maps a point R on \overrightarrow{PQ} to a point R' on \overrightarrow{PQ} .
- 4. On the plane, $\overline{AB} \parallel \overline{A'B'}$ and $\overrightarrow{AB} \neq \overleftarrow{A'B'}$. Describe a dilation mapping \overline{AB} to $\overline{A'B'}$. (Hint: There are 2 cases to consider.)
- 5. Only one of Figures *A*, *B*, or *C* below contains a dilation that maps *A* to *A'* and *B* to *B'*. Explain for each figure why the dilation does or does not exist. For each figure, assume that $\overrightarrow{AB} \neq \overrightarrow{A'B'}$.

Lesson 7

GEOMETRY