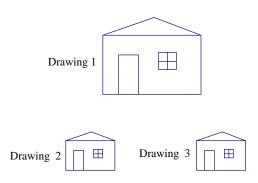


Lesson 11: Dilations from Different Centers

Classwork

Exploratory Challenge 1

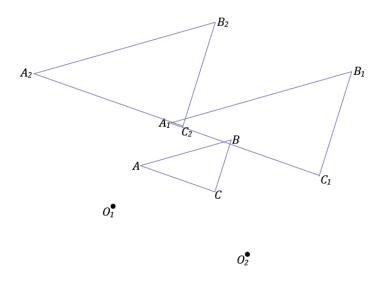
Drawing 2 and Drawing 3 are both scale drawings of Drawing 1.



- a. Determine the scale factor and center for each scale drawing. Take measurements as needed.
- b. Is there a way to map Drawing 2 onto Drawing 3 or map Drawing 3 onto Drawing 2?
- c. Generalize the parameters of this example and its results.

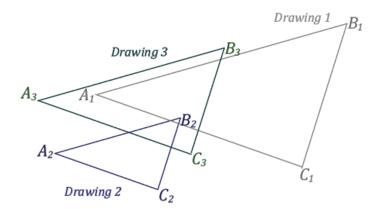
Exercise 1

Triangle *ABC* has been dilated with scale factor $\frac{1}{2}$ from centers O_1 and O_2 . What can you say about line segments A_1A_2 , B_1B_2 , and C_1C_2 ?



Exploratory Challenge 2

If Drawing 2 is a scale drawing of Drawing 1 with scale factor r_1 and Drawing 3 is a scale drawing of Drawing 2 with scale factor r_2 , what is the relationship between Drawing 3 and Drawing 1?



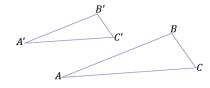
a. Determine the scale factor and center for each scale drawing. Take measurements as needed.

- c. Compare the centers of dilations of Drawing 1 (to Drawing 2) and of Drawing 2 (to Drawing 3). What do you notice about these centers relative to the center of the composition of dilations O_3 ?
- d. Generalize the parameters of this example and its results.

Exercise 2

Triangle *ABC* has been dilated with scale factor $\frac{2}{3}$ from center O_1 to get triangle *A'B'C'*, and then triangle *A'B'C'* is dilated from center O_2 with scale factor $\frac{1}{2}$ to get triangle *A''B''C''*. Describe the dilation that maps triangle *ABC* to triangle *A''B''C''*. Find the center and scale factor for that dilation.

01.



Dilations from Different Centers

*0*₂[●]

Lesson 11:

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from GEO-M2-TE-1.3.0-08.2015

Lesson 11

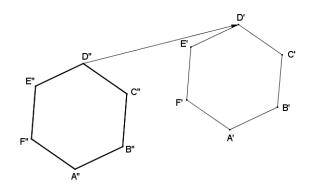
GEOMETRY

Lesson Summary

In a series of dilations, the scale factor that maps the original figure onto the final image is the product of all the scale factors in the series of dilations.

Problem Set

- 1. In Lesson 7, the dilation theorem for line segments said that if two different-length line segments in the plane were parallel to each other, then a dilation exists mapping one segment onto the other. Explain why the line segments must be different lengths for a dilation to exist.
- Regular hexagon A'B'C'D'E'F' is the image of regular hexagon ABCDEF under a dilation from center O₁, and regular hexagon A''B''C''D''E''F'' is the image of regular hexagon ABCDEF under a dilation from center O₂. Points A', B', C', D', E', and F' are also the images of points A'', B'', C'', D'', E'', and F'', respectively, under a translation along vector D''D'. Find a possible regular hexagon ABCDEF.



3. A dilation with center O_1 and scale factor $\frac{1}{2}$ maps figure F to figure F'. A dilation with center O_2 and scale factor $\frac{3}{2}$ maps figure F' to figure F''. Draw figures F' and F'', and then find the center O and scale factor r of the dilation that takes F to F''.

_
F

Η

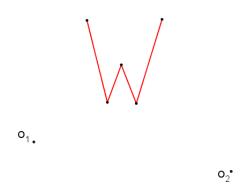
O_1	٠		٠	O_2
-------	---	--	---	-------

- 4. A figure *T* is dilated from center O_1 with a scale factor $r_1 = \frac{3}{4}$ to yield image *T'*, and figure *T'* is then dilated from center O_2 with a scale factor $r_2 = \frac{4}{3}$ to yield figure *T''*. Explain why $T \cong T''$.
- 5. A dilation with center O_1 and scale factor $\frac{1}{2}$ maps figure H to figure H'. A dilation with center O_2 and scale factor 2 maps figure H' to figure H''. Draw figures H' and H''. Find a vector for a translation that maps H to H''.

 O_1 O_2

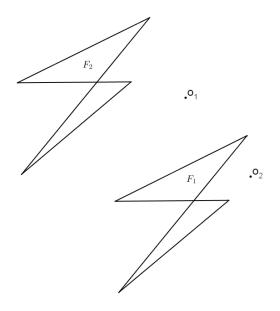
engage^{ny}

6. Figure W is dilated from O_1 with a scale factor $r_1 = 2$ to yield W'. Figure W' is then dilated from center O_2 with a scale factor $r_2 = \frac{1}{4}$ to yield W''.



- a. Construct the composition of dilations of figure W described above.
- b. If you were to dilate figure W'', what scale factor would be required to yield an image that is congruent to figure W?
- c. Locate the center of dilation that maps W'' to W using the scale factor that you identified in part (b).

7. Figures F_1 and F_2 in the diagram below are dilations of F from centers O_1 and O_2 , respectively.



- a. Find F.
- b. If $F_1 \cong F_2$, what must be true of the scale factors r_1 and r_2 of each dilation?
- c. Use direct measurement to determine each scale factor for D_{O_1,r_1} and D_{O_2,r_2} .
- 8. Use a coordinate plane to complete each part below using U(2,3), V(6,6), and W(6,-1).
 - a. Dilate \triangle *UVW* from the origin with a scale factor $r_1 = 2$. List the coordinates of image points U', V', and W'.
 - b. Dilate $\triangle UVW$ from (0,6) with a scale factor of $r_2 = \frac{3}{4}$. List the coordinates of image points U'', V'', and W''.
 - c. Find the scale factor, r_3 , from $\triangle U'V'W'$ to $\triangle U''V''W''$.
 - d. Find the coordinates of the center of dilation that maps $\triangle U'V'W'$ to $\triangle U''V''W''$.

S.76

engac