

Lesson 5: Scale Factors

Classwork

Opening Exercise

Quick Write: Describe how a figure is transformed under a dilation with a scale factor = 1, r > 1, and 0 < r < 1.

Discussion

DILATION THEOREM: If a dilation with center O and scale factor r sends point P to P' and Q to Q', then |P'Q'| = r|PQ|. Furthermore, if $r \neq 1$ and O, P, and Q are the vertices of a triangle, then $\overrightarrow{PQ}||\overrightarrow{P'Q'}$.

Now consider the dilation theorem when O, P, and Q are the vertices of $\triangle OPQ$. Since P' and Q' come from a dilation with scale factor r and center O, we have $\frac{OP'}{OP} = \frac{OQ'}{OQ} = r$.

There are two cases that arise; recall what you wrote in your Quick Write. We must consider the case when r > 1 and when 0 < r < 1. Let's begin with the latter.

Dilation Theorem Proof, Case 1

engage

ny

This work is derived from Eureka Math [™] and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from GEO-M2-TE-1.3.0-08.2015

S.33

engage^{ny}

Exercises

1. Prove Case 2: If O, P, and Q are the vertices of a triangle and r > 1, show that (a) $\overrightarrow{PQ} || \overrightarrow{P'Q'}$ and (b) P'Q' = rPQ. Use the diagram below when writing your proof.

2.

a. Produce a scale drawing of $\triangle LMN$ using either the ratio or parallel method with point M as the center and a scale factor of $\frac{3}{2}$.

engage

ny

Use the dilation theorem to predict the length of $\overline{L'N'}$, and then measure its length directly using a ruler. b.

Does the dilation theorem appear to hold true? c.

3. Produce a scale drawing of $\triangle XYZ$ with point X as the center and a scale factor of $\frac{1}{4}$. Use the dilation theorem to predict Y'Z', and then measure its length directly using a ruler. Does the dilation theorem appear to hold true?

4. Given the diagram below, determine if $\triangle DEF$ is a scale drawing of $\triangle DGH$. Explain why or why not.

engage^{ny}

Problem Set

- 1. $\triangle AB'C'$ is a dilation of $\triangle ABC$ from vertex A, and CC' = 2. Use the given information in each part and the diagram to find B'C'.
 - a. AB = 9, AC = 4, and BC = 7
 - b. AB = 4, AC = 9, and BC = 7
 - c. AB = 7, AC = 9, and BC = 4
 - d. AB = 7, AC = 4, and BC = 9
 - e. AB = 4, AC = 7, and BC = 9
 - f. AB = 9, AC = 7, and BC = 4

2. Given the diagram, $\angle CAB \cong \angle CFE$. Find *AB*.

engage^{ny}

3. Use the diagram to answer each part below.

- a. $\triangle OP'Q'$ is the dilated image of $\triangle OPQ$ from point O with a scale factor of r > 1. Draw a possible \overline{PQ} .
- b. $\triangle OP''Q''$ is the dilated image of $\triangle OPQ$ from point O with a scale factor k > r. Draw a possible $\overline{P''Q''}$.
- 4. Given the diagram to the right, $\overline{RS} \parallel \overline{PQ}$, Area ($\triangle RST$) = 15 units², and Area($\triangle OSR$) = 21 units², find RS.

5. Using the information given in the diagram and UX = 9, find Z on \overline{XU} such that \overline{YZ} is an altitude. Then, find YZ and XZ.

engag