

Lesson 21: The Graph of the Natural Logarithm Function

Classwork

Exploratory Challenge

Your task is to compare graphs of base *b* logarithm functions to the graph of the common logarithm function $f(x) = \log(x)$ and summarize your results with your group. Recall that the base of the common logarithm function is 10. A graph of *f* is provided below.

a. Select at least one base value from this list: $\frac{1}{10}$, $\frac{1}{2}$, 2, 5, 20, 100. Write a function in the form $g(x) = \log_b(x)$ for your selected base value, *b*.

b. Graph the functions f and g in the same viewing window using a graphing calculator or other graphing application, and then add a sketch of the graph of g to the graph of f shown below.

6-	y	 	 -		-		 -	 	 	 _ _		 _ _		-
4-										$f(\alpha)$	- - - - -	- 10	$\mathbf{g}(x)$	
2-										Jla	2	- 10	g(x)	-
0		-	-	-	1		1	i	I	I	i	i	i i	•
	0	2	4	6	8	10	12	14	16	18	20	22	$^{24}x^{ m \prime}$	
-2-			-				- 1		- + -	_		_ _	- +	
-4-					-								$-\frac{1}{1}\frac{1}{1}$	
-6-		1			_ L _									
-0-						_				_		_		

c. Describe how the graph of g for the base you selected compares to the graph of $f(x) = \log(x)$.

engage^{ny} s.143

d. Share your results with your group and record observations on the graphic organizer below. Prepare a group presentation that summarizes the group's findings.

How does the graph of $g(x) = \log_b(x)$ compare to the graph of $f(x) = \log(x)$ for various values of <i>b</i> ?						
0 < b < 1						
1 < b < 10						
<i>b</i> > 10						

Exercise 1

Use the change of base property to rewrite each logarithmic function in terms of the common logarithm function.

Base b

Base 10 (Common Logarithm)

 $g_1(x) = \log_{\frac{1}{4}}(x)$

 $g_2(x) = \log_{\frac{1}{2}}(x)$

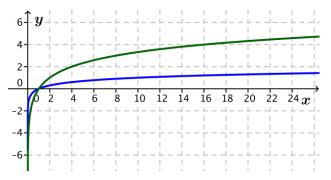
 $g_3(x) = \log_2(x)$

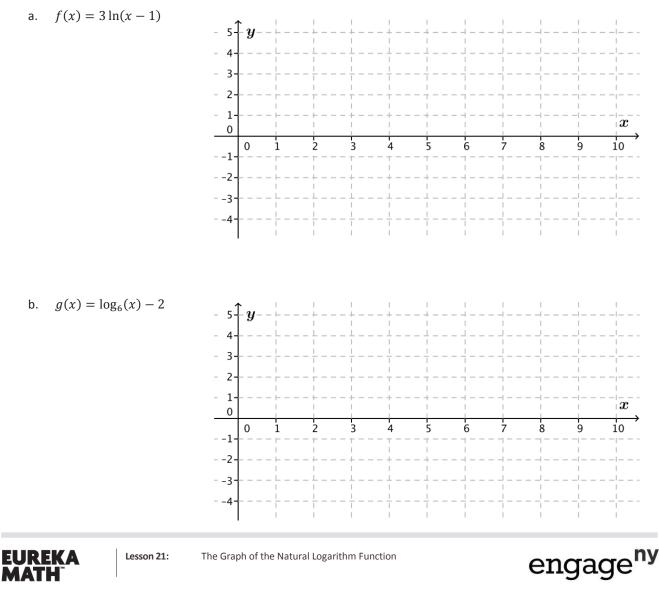
 $g_4(x) = \log_5(x)$

 $g_5(x) = \log_{20}(x)$

$$g_6(x) = \log_{100}(x)$$

The Graph of the Natural Logarithm Function


S.144


Example 1: The Graph of the Natural Logarithm Function $f(x) = \ln(x)$

Graph the natural logarithm function below to demonstrate where it sits in relation to the graphs of the base-2 and base-10 logarithm functions.

Example 2

Graph each function by applying transformations of the graphs of the natural logarithm function.

S.145

Problem Set

- 1. Rewrite each logarithmic function as a natural logarithm function.
 - a. $f(x) = \log_5(x)$
 - b. $f(x) = \log_2(x 3)$
 - c. $f(x) = \log_2\left(\frac{x}{3}\right)$
 - d. $f(x) = 3 \log(x)$
 - e. $f(x) = 2\log(x+3)$
 - f. $f(x) = \log_5(25x)$
- Describe each function as a transformation of the natural logarithm function $f(x) = \ln(x)$. 2.
 - a. $g(x) = 3 \ln(x+2)$
 - b. $g(x) = -\ln(1-x)$
 - c. $g(x) = 2 + \ln(e^2 x)$
 - d. $g(x) = \log_5(25x)$
- 3. Sketch the graphs of each function in Problem 2 and identify the key features including intercepts, decreasing or increasing intervals, and the vertical asymptote.
- Solve the equation $1 e^{x-1} = \ln(x)$ graphically, without using a calculator. 4.
- Use a graphical approach to explain why the equation log(x) = ln(x) has only one solution. 5.
- Juliet tried to solve this equation as shown below using the change of base property and concluded there is no 6. solution because $\ln(10) \neq 1$. Construct an argument to support or refute her reasoning.

$$\log(x) = \ln(x)$$
$$\frac{\ln(x)}{\ln(10)} = \ln(x)$$
$$\left(\frac{\ln(x)}{\ln(10)}\right)\frac{1}{\ln(x)} = (\ln(x))\frac{1}{\ln(x)}$$
$$\frac{1}{\ln(10)} = 1$$

The Graph of the Natural Logarithm Function

S.146

engage^{ny}

- 7. Consider the function f given by $f(x) = \log_x(100)$ for x > 0 and $x \neq 1$.
 - a. What are the values of f(100), f(10), and $f(\sqrt{10})$?
 - b. Why is the value 1 excluded from the domain of this function?
 - c. Find a value x so that f(x) = 0.5.
 - d. Find a value w so that f(w) = -1.
 - e. Sketch a graph of $y = \log_x(100)$ for x > 0 and $x \neq 1$.

1: The Graph of the Natural Logarithm Function

