

Lesson 17: Graphing the Logarithm Function

Classwork

Opening Exercise

Graph the points in the table for your assigned function $f(x) = \log(x)$, $g(x) = \log_2(x)$, or $h(x) = \log_5(x)$ for $0 < x \le 16$. Then, sketch a smooth curve through those points and answer the questions that follow.

	10-team			2-team				5-team						
		f(x) =	$= \log(x)$		g (x)	$= \log_2$	(x)		h(x) =	log ₅	(<i>x</i>)			
		x	f(x)		x	g	(x)		x	h (<i>x</i>)			
		0.0625	-1.20		0.062	25 -	-4		0.0625	-1	.72			
		0.125	-0.90		0.12	5 -	-3		0.125	-1	.29			
		0.25	-0.60		0.25	5 -	-2		0.25	-0	.86			
		0.5	-0.30		0.5	-	-1		0.5	-0	.43			
		1	0		1		0		1	()			
		2	0.30		2		1		2	0.4	43			
		4	0.60		4		2		4	0.8	36			
		8	0.90		8		3		8	1.2	29			
		16	1.20		16		4		16	1.7	72			
,	Î												1	-
4- 3-														
2- 1-														
0											 			
1-				6 	7 	8	9	10		2 1	L3	14 	15 	16
2-				 							 	-	+ + 	

- - - 3-

- What does the graph indicate about the domain of your function? a.
- Describe the *x*-intercepts of the graph. b.
- Describe the *y*-intercepts of the graph. с.
- Find the coordinates of the point on the graph with *y*-value 1. d.
- Describe the behavior of the function as $x \rightarrow 0$. e.
- f. Describe the end behavior of the function as $x \to \infty$.
- Describe the range of your function. g.
- Does this function have any relative maxima or minima? Explain how you know. h.

S.110

Exercises

1. Graph the points in the table for your assigned function $r(x) = \log_{\frac{1}{10}}(x)$, $s(x) = \log_{\frac{1}{2}}(x)$, or $t(x) = \log_{\frac{1}{5}}(x)$ for $0 < x \le 16$. Then sketch a smooth curve through those points, and answer the questions that follow.

10-t				
r(x) = 1		s (
x	r(x)			
0.0 625	1.20		0.	
0.125	0.90		0	
0.25	0.60		(
0.5	0.30			
1	0			
2	-0.30			
4	-0.60			
8	-0.90			
16	-1.20			

2-team			
$s(x) = \log_{\frac{1}{2}}(x)$			
x	s(x)		
0.0 625	4		
0.125	3		
0.25	2		
0.5	1		
1	0		
2	-1		
4	-2		
8	-3		
16	-4		

<i>e</i> -team				
$t(x) = \log_{\frac{1}{5}}(x)$				
x	t(x)			
0.0 625	1.72			
0.125	1.29			
0.25	0.86			
0.5	0.43			
1	0			
2	-0.43			
4	-0.86			
8	-1.29			
16	-1.72			

- a. What is the relationship between your graph in the Opening Exercise and your graph from this exercise?
- b. Why does this happen? Use the change of base formula to justify what you have observed in part (a).

2. In general, what is the relationship between the graph of a function y = f(x) and the graph of y = f(kx) for a constant k?

- 10-team 2-team 5-team $u(x) = \log(10x)$ $v(x) = \log_2(2x)$ $w(x) = \log_5(5x)$ x u(x)w(x)x v(x)x 0.0625 -0.200.0 625 0.0 625 -0.72-3-2 0.125 0.10 0.125 0.125 -0.290.25 0.40 0.25 -10.25 0.14 0.5 0.70 0.5 0 0.5 0.57 1 1 1 1 1 1 2 1.30 2 2 2 1.43 4 1.60 4 3 4 1.86 8 1.90 8 4 8 2.29 5 16 2.20 16 16 2.72
- 3. Graph the points in the table for your assigned function $u(x) = \log(10x)$, $v(x) = \log_2(2x)$, or $w(x) = \log_5(5x)$ for $0 < x \le 16$. Then sketch a smooth curve through those points, and answer the questions that follow.

EUREKA MATH

Describe a transformation that takes the graph of your team's function in this exercise to the graph of your a. team's function in the Opening Exercise.

Do your answers to Exercise 2 and part (a) agree? If not, use properties of logarithms to justify your b. observations in part (a).

Graphing the Logarithm Function

Lesson Summary

The function $f(x) = \log_b(x)$ is defined for irrational and rational numbers. Its domain is all positive real numbers. Its range is all real numbers.

The function $f(x) = \log_b(x)$ goes to negative infinity as x goes to zero. It goes to positive infinity as x goes to positive infinity.

The larger the base *b*, the more slowly the function $f(x) = \log_b(x)$ increases.

By the change of base formula, $\log_{\frac{1}{2}}(x) = -\log_b(x)$.

Problem Set

- 1. The function $Q(x) = \log_b(x)$ has function values in the table at right.
 - a. Use the values in the table to sketch the graph of y = Q(x).
 - b. What is the value of b in $Q(x) = \log_b(x)$? Explain how you know.
 - c. Identify the key features in the graph of y = Q(x).

- 2. Consider the logarithmic functions $f(x) = \log_b(x)$, $g(x) = \log_5(x)$, where *b* is a positive real number, and $b \neq 1$. The graph of *f* is given at right.
 - a. Is b > 5, or is b < 5? Explain how you know.
 - b. Compare the domain and range of functions f and g.
 - c. Compare the x-intercepts and y-intercepts of f and g.
 - d. Compare the end behavior of f and g.

x	Q(x)
0.1	1.66
0.3	0.87
0.5	0.50
1.00	0.00
2.00	-0.50
4.00	-1.00
6.00	-1.29
10.00	-1.66
12.00	-1.79

- 3. Consider the logarithmic functions $f(x) = \log_b(x)$, $g(x) = \log_{\frac{1}{2}}(x)$, where b is a positive real number and $b \neq 1$. A table of approximate values of f is given below.
 - a. Is $b > \frac{1}{2}$, or is $b < \frac{1}{2}$? Explain how you know.
 - b. Compare the domain and range of functions f and g.
 - c. Compare the x-intercepts and y-intercepts of f and g.
 - d. Compare the end behavior of f and g.

x	f(x)				
$\frac{1}{4}$	0.86				
$\frac{1}{2}$	0.43				
1	0				
2	-0.43				
4	-0.86				

Lesson 17

M3

ALGEBRA II

- 4. On the same set of axes, sketch the functions $f(x) = \log_2(x)$ and $g(x) = \log_2(x^3)$.
 - a. Describe a transformation that takes the graph of f to the graph of g.
 - b. Use properties of logarithms to justify your observations in part (a).
- 5. On the same set of axes, sketch the functions $f(x) = \log_2(x)$ and $g(x) = \log_2(\frac{x}{4})$.
 - a. Describe a transformation that takes the graph of f to the graph of g.
 - b. Use properties of logarithms to justify your observations in part (a).
- 6. On the same set of axes, sketch the functions $f(x) = \log_{\frac{1}{2}}(x)$ and $g(x) = \log_{2}(\frac{1}{x})$.
 - a. Describe a transformation that takes the graph of f to the graph of g.
 - b. Use properties of logarithms to justify your observations in part (a).
- 7. The figure below shows graphs of the functions $f(x) = \log_3(x)$, $g(x) = \log_5(x)$, and $h(x) = \log_{11}(x)$.
 - a. Identify which graph corresponds to which function. Explain how you know.
 - b. Sketch the graph of $k(x) = \log_7(x)$ on the same axes.

(cc) BY-NC-SA

S.115

- 8. The figure below shows graphs of the functions $f(x) = \log_{\frac{1}{2}}(x)$, $g(x) = \log_{\frac{1}{2}}(x)$, and $h(x) = \log_{\frac{1}{2}}(x)$.
 - a. Identify which graph corresponds to which function. Explain how you know.
 - b. Sketch the graph of $k(x) = \log_{\frac{1}{7}}(x)$ on the same axes.

- 9. For each function *f*, find a formula for the function *h* in terms of *x*. Part (a) has been done for you.
 - a. If $f(x) = x^2 + x$, find h(x) = f(x + 1).
 - b. If $f(x) = \sqrt{x^2 + \frac{1}{4}}$, find $h(x) = f(\frac{1}{2}x)$.
 - c. If $f(x) = \log(x)$, find $h(x) = f(\sqrt[3]{10x})$ when x > 0.
 - d. If $f(x) = 3^x$, find $h(x) = f(\log_3(x^2 + 3))$.
 - e. If $f(x) = x^3$, find $h(x) = f\left(\frac{1}{x^3}\right)$ when $x \neq 0$.
 - f. If $f(x) = x^3$, find $h(x) = f(\sqrt[3]{x})$.
 - g. If $f(x) = \sin(x)$, find $h(x) = f(x + \frac{\pi}{2})$.
 - h. If $f(x) = x^2 + 2x + 2$, find $h(x) = f(\cos(x))$.

S.116

engage

10. For each of the functions f and g below, write an expression for (i) f(g(x)), (ii) g(f(x)), and (iii) f(f(x)) in terms of x. Part (a) has been done for you.

a.
$$f(x) = x^2, g(x) = x + 1$$

i. $f(g(x)) = f(x + 1)$
 $= (x + 1)^2$

ii.
$$g(f(x)) = g(x^2)$$

 $= x^2 + 1$
iii. $f(f(x)) = f(x^2)$

$$= (x^{2})^{2} = x^{4}$$

- b. $f(x) = \frac{1}{4}x 8$, g(x) = 4x + 1
- c. $f(x) = \sqrt[3]{x+1}, g(x) = x^3 1$

d.
$$f(x) = x^3, g(x) = \frac{1}{x^3}$$

e. $f(x) = |x|, g(x) = x^2$

Extension:

- 11. Consider the functions $f(x) = \log_2(x)$ and $(x) = \sqrt{x-1}$.
 - a. Use a calculator or other graphing utility to produce graphs of $f(x) = \log_2(x)$ and $g(x) = \sqrt{x-1}$ for $x \le 17$.
 - b. Compare the graph of the function $f(x) = \log_2(x)$ with the graph of the function $g(x) = \sqrt{x-1}$. Describe the similarities and differences between the graphs.
 - c. Is it always the case that $\log_2(x) > \sqrt{x-1}$ for x > 2?
- 12. Consider the functions $f(x) = \log_2(x)$ and $(x) = \sqrt[3]{x-1}$.
 - a. Use a calculator or other graphing utility to produce graphs of $f(x) = \log_2(x)$ and $h(x) = \sqrt[3]{x-1}$ for $x \le 28$.
 - b. Compare the graph of the function $f(x) = \log_2(x)$ with the graph of the function $h(x) = \sqrt[3]{x-1}$. Describe the similarities and differences between the graphs.
 - c. Is it always the case that $\log_2(x) > \sqrt[3]{x-1}$ for x > 2?

S.117

Lesson 17

ALGEBRA II