

Lesson 8: The "WhatPower" Function

Classwork

Opening Exercise

- a. Evaluate each expression. The first two have been completed for you.
 - i. WhatPower₂(8) = 3
 - ii. WhatPower₃(9) = 2
 - iii. WhatPower₆(36) = _____
 - iv. WhatPower₂(32) = _____
 - v. WhatPower₁₀(1000) = _____
 - vi. WhatPower₁₀(1000 000) = _____
 - vii. WhatPower₁₀₀(1000 000) =_____
 - viii. WhatPower₄(64) = _____
 - ix. WhatPower₂(64) = _____
 - x. WhatPower₉(3) = _____
 - xi. WhatPower₅ $(\sqrt{5}) =$ _____
 - xii. WhatPower $\frac{1}{2}\left(\frac{1}{8}\right) =$ _____
 - xiii. WhatPower₄₂(1) = _____
 - xiv. WhatPower₁₀₀(0.01) =_____
 - xv. WhatPower₂ $\left(\frac{1}{4}\right) =$ _____

S.50

engage^{ny}

- xvi. WhatPower $\frac{1}{4}(2) =$ _____
- b. With your group members, write a definition for the function WhatPower_b, where b is a number.

Exercises 1–9

Evaluate the following expressions, and justify your answers.

- 1. WhatPower₇(49)
- 2. WhatPower₀(7)
- 3. WhatPower₅(1)
- 4. WhatPower₁(5)
- 5. WhatPower₋₂(16)
- 6. WhatPower₋₂(32)
- 7. WhatPower $\frac{1}{3}(9)$
- 8. WhatPower_ $\frac{1}{3}(27)$

engage^{ny}

S.51

9. Describe the allowable values of *b* in the expression WhatPower_b(*x*). When can we define a function f(x) =WhatPower_b(*x*)? Explain how you know.

Examples

- 1. $\log_2(8) = 3$
- 2. $\log_3(9) = 2$
- 3. $\log_6(36) =$ _____
- 4. $\log_2(32) =$
- 5. $\log_{10}(1000) =$ _____
- 6. $\log_{42}(1) =$ _____
- 7. $\log_{100}(0.01) =$
- 8. $\log_2\left(\frac{1}{4}\right) =$

Exercise 10

- 10. Compute the value of each logarithm. Verify your answers using an exponential statement.
 - a. $\log_2(32)$

- b. $\log_3(81)$
- c. log₉(81)
- d. $\log_5(625)$
- e. log₁₀(100000000)
- f. log₁₀₀₀(100000000)
- g. log₁₃(13)
- h. $\log_{13}(1)$
- i. $\log_7(\sqrt{7})$
- j. log₉(27)
- k. $\log_{\sqrt{7}}(7)$
- I. $\log_{\sqrt{7}}\left(\frac{1}{49}\right)$
- m. $\log_x(x^2)$

engage^{ny}

S.53

Lesson Summary

- If three numbers *L*, *b*, and *x* are related by $x = b^L$, then *L* is the *logarithm base b* of *x*, and we write $\log_b(x) = L$. That is, the value of the expression $\log_b(x)$ is the power of *b* needed to obtain *x*.
- Valid values of b as a base for a logarithm are 0 < b < 1 and b > 1.

Problem Set

- 1. Rewrite each of the following in the form WhatPower_b(x) = L.
 - a. $3^5 = 243$ b. $6^{-3} = \frac{1}{216}$ c. $9^0 = 1$
- 2. Rewrite each of the following in the form $\log_b(x) = L$.
 - a. $16^{\frac{1}{4}} = 2$ b. $10^3 = 1000$ c. $b^k = r$
- 3. Rewrite each of the following in the form $b^L = x$.

a. $\log_5(625) = 4$ b. $\log_{10}(0.1) = -1$ c. $\log_{27}9 = \frac{2}{3}$

- 4. Consider the logarithms base 2. For each logarithmic expression below, either calculate the value of the expression or explain why the expression does not make sense.
 - a. $\log_2(1024)$
 - b. $\log_2(128)$
 - c. $\log_2(\sqrt{8})$
 - d. $\log_2\left(\frac{1}{16}\right)$
 - e. $\log_2(0)$
 - f. $\log_2\left(-\frac{1}{32}\right)$
- 5. Consider the logarithms base 3. For each logarithmic expression below, either calculate the value of the expression or explain why the expression does not make sense.
 - a. log₃(243)
 - b. log₃(27)
 - c. $\log_3(1)$
 - d. $\log_3\left(\frac{1}{3}\right)$
 - e. $\log_3(0)$
 - f. $\log_3\left(-\frac{1}{3}\right)$

engage^{ny}

S.54

Lesson 8

M3

ALGEBRA II

- 6. Consider the logarithms base 5. For each logarithmic expression below, either calculate the value of the expression or explain why the expression does not make sense.
 - a. log₅(3125)
 - b. $\log_5(25)$
 - c. $\log_5(1)$
 - d. $\log_5\left(\frac{1}{25}\right)$
 - e. $\log_5(0)$
 - f. $\log_5\left(-\frac{1}{25}\right)$
- 7. Is there any positive number b so that the expression $\log_b(0)$ makes sense? Explain how you know.
- 8. Is there any positive number b so that the expression $\log_b(-1)$ makes sense? Explain how you know.
- 9. Verify each of the following by evaluating the logarithms.
 - a. $\log_2(8) + \log_2(4) = \log_2(32)$
 - b. $\log_3(9) + \log_3(9) = \log_3(81)$
 - c. $\log_4(4) + \log_4(16) = \log_4(64)$
 - d. $\log_{10}(10^3) + \log_{10}(10^4) = \log_{10}(10^7)$
- 10. Looking at the results from Problem 9, do you notice a trend or pattern? Can you make a general statement about the value of $\log_b(x) + \log_b(y)$?
- 11. To evaluate $\log_2(3)$, Autumn reasoned that since $\log_2(2) = 1$ and $\log_2(4) = 2$, $\log_2(3)$ must be the average of 1 and 2 and therefore $\log_2(3) = 1.5$. Use the definition of logarithm to show that $\log_2(3)$ cannot be 1.5. Why is her thinking not valid?
- 12. Find the value of each of the following.
 - a. If $x = \log_2(8)$ and $y = 2^x$, find the value of y.
 - b. If $\log_2(x) = 6$, find the value of x.
 - c. If $r = 2^6$ and $s = \log_2(r)$, find the value of s.

S.55

engage^{ny}

Lesson 8

ALGEBRA II