

Lesson 12: Properties of Logarithms

Classwork

Opening Exercise

Use the approximation $log(2) \approx 0.3010$ to approximate the values of each of the following logarithmic expressions.

- a. log(20)
- b. log(0.2)
- c. $\log(2^4)$

Exercises

For Exercises 1–6, explain why each statement below is a property of base-10 logarithms.

- 1. Property 1: $\log(1) = 0$.
- 2. Property 2: $\log(10) = 1$.
- 3. Property 3: For all real numbers r, $log(10^r) = r$.
- 4. Property 4: For any x > 0, $10^{\log(x)} = x$.

engage^{ny}

S.75

- 5. Property 5: For any positive real numbers x and y, $log(x \cdot y) = log(x) + log(y)$. Hint: Use an exponent rule as well as Property 4.
- 6. Property 6: For any positive real number x and any real number r, $log(x^r) = r \cdot log(x)$. Hint: Use an exponent rule as well as Property 4.

7. Apply properties of logarithms to rewrite the following expressions as a single logarithm or number.

a.
$$\frac{1}{2}\log(25) + \log(4)$$

b.
$$\frac{1}{3}\log(8) + \log(16)$$

- c. $3\log(5) + \log(0.8)$
- 8. Apply properties of logarithms to rewrite each expression as a sum of terms involving numbers, log(x), and log(y), where x and y are positive real numbers.
 - a. $\log(3x^2y^5)$
 - b. $\log(\sqrt{x^7y^3})$

This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from ALG II-M3-TE-1.3.0-08.2015 engage^{ny}

S.76

Lesson 12

M3

ALGEBRA II

Use the property stated above to solve the following equations.

a. $10^{10x} = 100$

b.
$$10^{x-1} = \frac{1}{10^{x+1}}$$

c.
$$100^{2x} = 10^{3x-1}$$

- 10. Solve the following equations.
 - a. $10^x = 2^7$

b.
$$10^{x^2+1} = 15$$

c.
$$4^x = 5^3$$

Lesson 12

M3

ALGEBRA II

ALGEBRA II

Lesson Summary

We have established the following properties for base 10 logarithms, where x and y are positive real numbers and *r* is any real number:

- 1. $\log(1) = 0$
- 2. $\log(10) = 1$
- 3. $\log(10^r) = r$
- 4. $10^{\log(x)} = x$
- 5. $\log(x \cdot y) = \log(x) + \log(y)$
- 6. $\log(x^r) = r \cdot \log(x)$

Additional properties not yet established are the following:

7.
$$\log\left(\frac{1}{x}\right) = -\log(x)$$

8.
$$\log\left(\frac{x}{y}\right) = \log(x) - \log(y)$$

Also, logarithms are well defined, meaning that for X, Y > 0, if X = Y, then $\log(X) = \log(Y)$.

Problem Set

1. Use the approximate logarithm values below to estimate the value of each of the following logarithms. Indicate which properties you used.

$\log(2) = 0.3010$	$\log(3) = 0.4771$
$\log(5) = 0.6990$	$\log(7) = 0.8451$

- log(6)a.
- b. log(15)
- c. log(12)
- d. $\log(10^7)$
- e. $\log\left(\frac{1}{5}\right)$
- $\log\left(\frac{3}{7}\right)$ f.
- $\log(\sqrt[4]{2})$ g.

engage^{ny}

S.78

- 2. Let log(X) = r, log(Y) = s, and log(Z) = t. Express each of the following in terms of r, s, and t.
 - a. $\log\left(\frac{X}{Y}\right)$
 - b. log(YZ)
 - c. $\log(X^r)$
 - d. $\log(\sqrt[3]{Z})$

e.
$$\log\left(\sqrt[4]{\frac{Y}{Z}}\right)$$

- f. $\log(XY^2Z^3)$
- 3. Use the properties of logarithms to rewrite each expression in an equivalent form containing a single logarithm.
 - a. $\log\left(\frac{13}{5}\right) + \log\left(\frac{5}{4}\right)$ b. $\log\left(\frac{5}{6}\right) - \log\left(\frac{2}{3}\right)$ c. $\frac{1}{2}\log(16) + \log(3) + \log\left(\frac{1}{4}\right)$
- 4. Use the properties of logarithms to rewrite each expression in an equivalent form containing a single logarithm.
 - a. $\log(\sqrt{x}) + \frac{1}{2}\log(\frac{1}{x}) + 2\log(x)$
 - b. $\log(\sqrt[5]{x}) + \log(\sqrt[5]{x^4})$
 - c. $\log(x) + 2\log(y) \frac{1}{2}\log(z)$

d.
$$\frac{1}{3} (\log(x) - 3\log(y) + \log(z))$$

- e. $2(\log(x) \log(3y)) + 3(\log(z) 2\log(x))$
- 5. In each of the following expressions, x, y, and z represent positive real numbers. Use properties of logarithms to rewrite each expression in an equivalent form containing only $\log(x)$, $\log(y)$, $\log(z)$, and numbers.

a.
$$\log\left(\frac{3x^2y^4}{\sqrt{z}}\right)$$

b. $\log\left(\frac{42\sqrt[3]{xy^7}}{x^2z}\right)$
c. $\log\left(\frac{100x^2}{y^3}\right)$
d. $\log\left(\sqrt{\frac{x^3y^2}{10z}}\right)$
e. $\log\left(\frac{1}{10x^2z}\right)$

engage^{ny}

S.79

- 6. Express $\log\left(\frac{1}{x} \frac{1}{x+1}\right) + \left(\log\left(\frac{1}{x}\right) \log\left(\frac{1}{x+1}\right)\right)$ as a single logarithm for positive numbers x.
- Show that $\log(x + \sqrt{x^2 1}) + \log(x \sqrt{x^2 1}) = 0$ for $x \ge 1$. 7.
- If $xy = 10^{3.67}$ for some positive real numbers x and y, find the value of $\log(x) + \log(y)$. 8.
- Solve the following exponential equations by taking the logarithm base 10 of both sides. Leave your answers stated 9. in terms of logarithmic expressions.
 - a. $10^{x^2} = 320$
 - b. $10^{\frac{x}{8}} = 300$
 - c. $10^{3x} = 400$
 - d. $5^{2x} = 200$
 - e. $3^x = 7^{-3x+2}$
- 10. Solve the following exponential equations.
 - a. $10^x = 3$
 - b. $10^{y} = 30$
 - c. $10^z = 300$
 - Use the properties of logarithms to justify why x, y, and z form an arithmetic sequence whose constant d. difference is 1.
- 11. Without using a calculator, explain why the solution to each equation must be a real number between 1 and 2.
 - a. $11^x = 12$
 - b. $21^x = 30$
 - c. $100^x = 2000$
 - d. $\left(\frac{1}{11}\right)^x = 0.01$
 - e. $\left(\frac{2}{3}\right)^x = \frac{1}{2}$

 - f. $99^x = 9000$

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

- a. $11^x = 12$
- b. $21^x = 30$
- c. $100^x = 2000$
- d. $\left(\frac{1}{11}\right)^x = 0.01$

e.
$$\left(\frac{2}{3}\right)^x = \frac{1}{2}$$

- f. $99^x = 9000$
- 13. Show that for any real number r, the solution to the equation $10^x = 3 \cdot 10^r$ is $\log(3) + r$.
- 14. Solve each equation. If there is no solution, explain why.
 - a. $3 \cdot 5^x = 21$
 - b. $10^{x-3} = 25$
 - c. $10^x + 10^{x+1} = 11$
 - d. $8 2^x = 10$
- 15. Solve the following equation for n: $A = P(1 + r)^n$.
- 16. In this exercise, we will establish a formula for the logarithm of a sum. Let $L = \log(x + y)$, where x, y > 0.
 - a. Show $\log(x) + \log\left(1 + \frac{y}{x}\right) = L$. State as a property of logarithms after showing this is a true statement.
 - b. Use part (a) and the fact that log(100) = 2 to rewrite log(365) as a sum.
 - c. Rewrite 365 in scientific notation, and use properties of logarithms to express log(365) as a sum of an integer and a logarithm of a number between 0 and 10.
 - d. What do you notice about your answers to (b) and (c)?
 - e. Find two integers that are upper and lower estimates of log(365).

engage^{ny}

S.81

Lesson 12

ALGEBRA II