Lesson 5: Irrational Exponents—What are $2^{\sqrt{2}}$ and 2^{π} ?

Classwork

Exercise 1

a. Write the following finite decimals as fractions (you do not need to reduce to lowest terms).

1.41, 1.414, 1.4142.

b. Write $2^{1.4}$, $2^{1.41}$, $2^{1.414}$, and $2^{1.4142}$ in radical form $(\sqrt[n]{2^m})$.

Use a calculator to compute decimal approximations of the radical expressions you found in part (b) to 5 decimal places. For each approximation, underline the digits that are also in the previous approximation, starting with 2.00000 done for you below. What do you notice?

$$2^1 = 2 = 2.00000$$

Lesson 5:

ALGEBRA II

Exercise 2

a. Write six terms of a sequence that a calculator can use to approximate 2^{π} .

(Hint: $\pi = 3.14159...$)

b. Compute $2^{3.14}$ and 2^{π} on your calculator. In which digit do they start to differ?

c. How could you improve the accuracy of your estimate of 2^{π} ?

Irrational Exponents—What are $2^{\sqrt{2}}$ and 2^{π} ?

(ce) BY-NC-SA

Lesson 5:

Problem Set

- 1. Is it possible for a number to be both rational and irrational?
- 2. Use properties of exponents to rewrite the following expressions as a number or an exponential expression with only one exponent.
 - a. $(2^{\sqrt{3}})^{\sqrt{3}}$
 - b. $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$
 - c. $(3^{1+\sqrt{5}})^{1-\sqrt{5}}$
 - d. $3^{\frac{1+\sqrt{5}}{2}} \cdot 3^{\frac{1-\sqrt{5}}{2}}$
 - e. $3^{\frac{1+\sqrt{5}}{2}} \div 3^{\frac{1-\sqrt{5}}{2}}$
 - f $3^{2\cos^2(x)} \cdot 3^{2\sin^2(x)}$

3.

- a. Between what two integer powers of 2 does $2^{\sqrt{5}}$ lie?
- b. Between what two integer powers of 3 does $3^{\sqrt{10}}$ lie?
- c. Between what two integer powers of 5 does $5^{\sqrt{3}}$ lie?
- 4. Use the process outlined in the lesson to approximate the number $2^{\sqrt{5}}$. Use the approximation $\sqrt{5} \approx 2.236\,067\,98$.
 - a. Find a sequence of five intervals that contain $\sqrt{5}$ whose endpoints get successively closer to $\sqrt{5}$.
 - b. Find a sequence of five intervals that contain $2^{\sqrt{5}}$ whose endpoints get successively closer to $2^{\sqrt{5}}$. Write your intervals in the form $2^r < 2^{\sqrt{5}} < 2^s$ for rational numbers r and s.
 - c. Use your calculator to find approximations to four decimal places of the endpoints of the intervals in part (b).
 - d. Based on your work in part (c), what is your best estimate of the value of $2^{\sqrt{5}}$?
 - e. Can we tell if $2^{\sqrt{5}}$ is rational or irrational? Why or why not?
- 5. Use the process outlined in the lesson to approximate the number $3^{\sqrt{10}}$. Use the approximation $\sqrt{10}\approx 3.162\ 277\ 7$.
 - a. Find a sequence of five intervals that contain $3^{\sqrt{10}}$ whose endpoints get successively closer to $3^{\sqrt{10}}$. Write your intervals in the form $3^r < 3^{\sqrt{10}} < 3^s$ for rational numbers r and s.
 - b. Use your calculator to find approximations to four decimal places of the endpoints of the intervals in part (a).
 - c. Based on your work in part (b), what is your best estimate of the value of $3^{\sqrt{10}}$?

AI GERRA II

- 6. Use the process outlined in the lesson to approximate the number $5^{\sqrt{7}}$. Use the approximation $\sqrt{7}\approx 2.645\,751\,31$.
 - a. Find a sequence of seven intervals that contain $5^{\sqrt{7}}$ whose endpoints get successively closer to $5^{\sqrt{7}}$. Write your intervals in the form $5^r < 5^{\sqrt{7}} < 5^s$ for rational numbers r and s.
 - b. Use your calculator to find approximations to four decimal places of the endpoints of the intervals in part (a).
 - c. Based on your work in part (b), what is your best estimate of the value of $5^{\sqrt{7}}$?
- 7. A rational number raised to a rational power can either be rational or irrational. For example, $4^{\frac{1}{2}}$ is rational because $4^{\frac{1}{2}} = 2$, and $2^{\frac{1}{4}}$ is irrational because $2^{\frac{1}{4}} = \sqrt[4]{2}$. In this problem, you will investigate the possibilities for an irrational number raised to an irrational power.
 - a. Evaluate $\left(\sqrt{2}\right)^{\left(\sqrt{2}\right)^{\sqrt{2}}}$.
 - b. Can the value of an irrational number raised to an irrational power ever be rational?

Irrational Exponents—What are $2^{\sqrt{2}}$ and 2^{π} ?

Lesson 5: