

Lesson 5: Extending the Domain of Sine and Cosine to All Real Numbers

Classwork

Opening Exercise

a. Suppose that a group of 360 coworkers pool their money, buying a single lottery ticket every day with the understanding that if any ticket is a winning ticket, the group will split the winnings evenly, and they will donate any leftover money to the local high school. Using this strategy, if the group wins \$1,000, how much money will be donated to the school?

b. What if the winning ticket is worth \$250,000? Using the same plan as in part (a), how much money will be donated to the school?

c. What if the winning ticket is worth \$540,000? Using the same plan as in part (a), how much money will be donated to the school?

Exercises 1–5

- 1. Find $\cos(405^\circ)$ and $\sin(405^\circ)$. Identify the measure of the reference angle.
- 2. Find $\cos(840^\circ)$ and $\sin(840^\circ)$. Identify the measure of the reference angle.
- 3. Find $\cos(1680^\circ)$ and $\sin(1680^\circ)$. Identify the measure of the reference angle.
- 4. Find cos(2115°) and sin(2115°). Identify the measure of the reference angle.
- 5. Find $\cos(720\,030^\circ)$ and $\sin(720\,030^\circ)$. Identify the measure of the reference angle.

Exercises 6–10

6. Find $\cos(-30^\circ)$ and $\sin(-30^\circ)$. Identify the measure of the reference angle.

7. Find $\cos(-135^{\circ})$ and $\sin(-135^{\circ})$. Identify the measure of the reference angle.

8. Find $\cos(-1320^\circ)$ and $\sin(-1320^\circ)$. Identify the measure of the reference angle.

9. Find $\cos(-2205^{\circ})$ and $\sin(-2205^{\circ})$. Identify the measure of the reference angle.

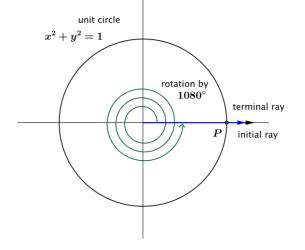
10. Find $\cos(-2835^{\circ})$ and $\sin(-2835^{\circ})$. Identify the measure of the reference angle.

Discussion

Case 1: What about the values of the sine and cosine function of other amounts of rotation that produce a terminal ray along the positive x-axis, such as 1080°?

Our definition of a reference angle is the angle formed by the terminal ray and the x-axis, but our terminal ray lies along the x-axis so the terminal ray and the x-axis form a zero angle.

How would we assign values to $\cos(1080^\circ)$ and $\sin(1080^\circ)$?



Lesson 5:

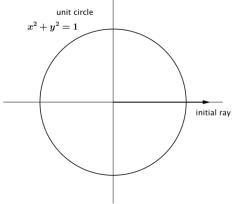
What if we rotated around 24,000°, which is 400 turns? What are cos(24000°) and sin(24000°)?

State a generalization of these results:

If $\theta = n \cdot 360$, for some integer *n*, then $\cos(\theta^{\circ}) =$ ____, and $\sin(\theta^{\circ}) =$ ____.

Case 2: What about the values of the sine and cosine function of other amounts of rotation that produce a terminal ray along the negative x-axis, such as 540°?

How would we assign values to $\cos(540^\circ)$ and $\sin(540^\circ)$?



What are the values of $\cos(900^\circ)$ and $\sin(900^\circ)$? How do you know?

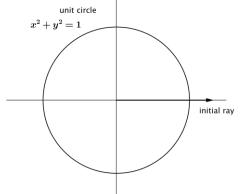
State a generalization of these results:

If $\theta = n \cdot 360 + 180$, for some integer *n*, then $\cos(\theta^{\circ}) =$ ____, and $\sin(\theta^{\circ}) =$ ____.

EUREKA MATH

Lesson 5:

Case 3: What about the values of the sine and cosine function for rotations that are 90° more than a number of full turns, such as -630° ? How would we assign values to $\cos(-630^\circ)$, and $\sin(-630^\circ)$?



Can we generalize to any rotation that produces a terminal ray along the positive *y*-axis?

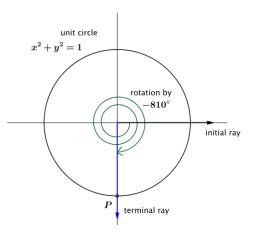
State a generalization of these results:

If $\theta = n \cdot 360 + 90$, for some integer n, then $\cos(\theta^{\circ}) = _$, and $\sin(\theta^{\circ}) = _$.

Case 4: What about the values of the sine and cosine function for rotations whose terminal ray lies along the negative y-axis, such as -810° ?

How would we assign values to $\cos(-810^\circ)$ and $\sin(-810^\circ)$?

Can we generalize to any rotation that produces a terminal ray along the negative *y*-axis?



State a generalization of these results:

If $\theta = n \cdot 360 + 270$, for some integer *n*, then $\cos(\theta^{\circ}) = ___$, and $\sin(\theta^{\circ}) = ___$.

Discussion

Let θ be any real number. In the Cartesian plane, rotate the initial ray by θ degrees about the origin. Intersect the resulting terminal ray with the unit circle to get a point (x_{θ}, y_{θ}) in the coordinate plane. The value of $\sin(\theta^{\circ})$ is y_{θ} , and the value of $\cos(\theta^{\circ})$ is x_{θ} .

Lesson 5:

Lesson Summary

In this lesson the definition of the sine and cosine are formalized as functions of a number of degrees of rotation, θ . The initial ray made from the positive *x*-axis through θ degrees is rotated, going counterclockwise if $\theta > 0$ and clockwise if $\theta < 0$. The point *P* is defined by the intersection of the terminal ray and the unit circle.

- The value of $\cos(\theta^{\circ})$ is the *x*-coordinate of *P*.
- The value of $sin(\theta^{\circ})$ is the *y*-coordinate of *P*.
- The sine and cosine functions have domain of all real numbers and range [-1,1].

Problem Set

1. Fill in the chart. Write in the measures of the reference angles and the values of the sine and cosine functions for the indicated values of θ .

Number of degrees of rotation, θ	Quadrant	Measure of Reference Angle, in degrees	$\cos(\theta^{\circ})$	sin(θ °)
690				
810				
1560				
1440				
855				
-330				
-4500				
-510				
-135				
-1170				

Extending the Domain of Sine and Cosine to All Real Numbers

S.36

2. Using geometry, Jennifer correctly calculated that $sin(15^\circ) = \frac{1}{2}\sqrt{2-\sqrt{3}}$. Based on this information, fill in the chart:

Number of degrees of rotation, θ	Quadrant	Measure of Reference Angle, in degrees	$\cos(\theta^{\circ})$	sin(θ°)
525				
705				
915				
-15				
-165				
-705				

- 3. Suppose θ represents a number of degrees of rotation and that $\sin(\theta^\circ) = 0.5$. List the first six possible positive values that θ can take.
- 4. Suppose θ represents a number of degrees of rotation and that $\sin(\theta^{\circ}) = -0.5$. List six possible negative values that θ can take.
- 5. Suppose θ represents a number of degrees of rotation. Is it possible that $\cos(\theta^{\circ}) = \frac{1}{2}$ and $\sin(\theta^{\circ}) = \frac{1}{2}$?
- 6. Jane says that since the reference angle for a rotation through -765° has measure 45° , then $\cos(-765^{\circ}) = \cos(45^{\circ})$, and $\sin(-765^{\circ}) = \sin(45^{\circ})$. Explain why she is or is not correct.
- 7. Doug says that since the reference angle for a rotation through 765° has measure 45°, then cos(765°) = cos(45°), and sin(765°) = sin(45°). Explain why he is or is not correct.

