

ALGEBRA II

Lesson 24: Multiplying and Dividing Rational Expressions

Classwork

If a, b, c, and d are rational expressions with $b \neq 0$, $d \neq 0$, then

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$
.

Example 1

Make a conjecture about the product $\frac{x^3}{4y} \cdot \frac{y^2}{x}$. What will it be? Explain your conjecture, and give evidence that it is

Example 2

Find the following product:

$$\left(\frac{3x-6}{2x+6}\right) \cdot \left(\frac{5x+15}{4x+8}\right).$$

engage^{ny}

Exercises 1-3

1. Summarize what you have learned so far with your neighbor.

2. Find the following product and reduce to lowest terms: $\left(\frac{2x+6}{x^2+x-6}\right) \cdot \left(\frac{x^2-4}{2x}\right)$.

3. Find the following product and reduce to lowest terms: $\left(\frac{4n-12}{3m+6}\right)^{-2} \cdot \left(\frac{n^2-2n-3}{m^2+4m+4}\right)$.

If a, b, c, and d are rational expressions with $b \neq 0$, $c \neq 0$, and $d \neq 0$, then

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}.$$

Lesson 24: Multiplying and Dividing Rational Expressions

ALGEBRA II

Example 3

Find the quotient and reduce to lowest terms: $\frac{x^2-4}{3x} \div \frac{x-2}{2x}$.

Exercises 4-5

4. Find the quotient and reduce to lowest terms: $\frac{x^2 - 5x + 6}{x + 4} \div \frac{x^2 - 9}{x^2 + 5x + 4}$

5. Simplify the rational expression.

$$\frac{\left(\frac{x+2}{x^2-2x-3}\right)}{\left(\frac{x^2-x-6}{x^2+6x+5}\right)}$$

Lesson Summary

In this lesson, we extended multiplication and division of rational numbers to multiplication and division of rational expressions.

- To multiply two rational expressions, multiply the numerators together and multiply the denominators together, and then reduce to lowest terms.
- To divide one rational expression by another, multiply the first by the multiplicative inverse of the second, and reduce to lowest terms.
- To simplify a complex fraction, apply the process for dividing one rational expression by another.

Problem Set

Perform the following operations:

a. Multiply
$$\frac{1}{3}(x-2)$$
 by 9.

b. Divide
$$\frac{1}{4}(x-8)$$
 by $\frac{1}{12}$.

a. Multiply
$$\frac{1}{3}(x-2)$$
 by 9. b. Divide $\frac{1}{4}(x-8)$ by $\frac{1}{12}$. c. Multiply $\frac{1}{4}(\frac{1}{3}x+2)$ by 12.

d. Divide
$$\frac{1}{3} \left(\frac{2}{5} x - \frac{1}{5} \right)$$
 by $\frac{1}{15}$

d. Divide
$$\frac{1}{3} \left(\frac{2}{5} x - \frac{1}{5} \right)$$
 by $\frac{1}{15}$. e. Multiply $\frac{2}{3} \left(2x + \frac{2}{3} \right)$ by $\frac{9}{4}$. f. Multiply $0.03(4 - x)$ by 100 .

f. Multiply
$$0.03(4 - x)$$
 by 100

Write each rational expression as an equivalent rational expression in lowest terms.

a.
$$\left(\frac{a^3b^2}{c^2d^2} \cdot \frac{c}{ab}\right) \div \frac{a}{c^2d^3}$$

c.
$$\frac{6x}{4x-16} \div \frac{4x}{x^2-16}$$

e.
$$\frac{2x^2-10x+12}{x^2-4} \cdot \frac{2+x}{3-x}$$

$$\mathsf{g.} \quad \frac{d+c}{c^2+d^2} \div \frac{c^2-d^2}{d^2-dc}$$

i.
$$\left(\frac{x-3}{x^2-4}\right)^{-1} \cdot \left(\frac{x^2-x-6}{x-2}\right)$$

k.
$$\frac{6x^2 - 11x - 10}{6x^2 - 5x - 6} \cdot \frac{6 - 4x}{25 - 20x + 4x^2}$$

b.
$$\frac{a^2+6a+9}{a^2-9} \cdot \frac{3a-9}{a+3}$$

d.
$$\frac{3x^2 - 6x}{3x + 1} \cdot \frac{x + 3x^2}{x^2 - 4x + 4}$$

f.
$$\frac{a-2b}{a+2b} \div \left(4b^2 - a^2\right)$$

h.
$$\frac{12a^2 - 7ab + b^2}{9a^2 - b^2} \div \frac{16a^2 - b^2}{3ab + b^2}$$

j.
$$\left(\frac{x-2}{x^2+1}\right)^{-3} \div \left(\frac{x^2-4x+4}{x^2-2x-3}\right)$$

1.
$$\frac{3x^3 - 3a^2x}{x^2 - 2ax + a^2} \cdot \frac{a - x}{a^3x + a^2x^2}$$

ALGEBRA II

3. Write each rational expression as an equivalent rational expression in lowest terms.

a.
$$\frac{\left(\frac{4a}{6b^2}\right)}{\left(\frac{20a^3}{12b}\right)}$$

b.
$$\frac{\left(\frac{x-2}{x^2-1}\right)}{\left(\frac{x^2-4}{x-6}\right)}$$

c.
$$\frac{\left(\frac{x^2 + 2x - 3}{x^2 + 3x - 4}\right)}{\left(\frac{x^2 + x - 6}{x + 4}\right)}$$

- 4. Suppose that $x = \frac{t^2 + 3t 4}{3t^2 3}$ and $y = \frac{t^2 + 2t 8}{2t^2 2t 4}$, for $t \ne 1$, $t \ne -1$, $t \ne 2$, and $t \ne -4$. Show that the value of x^2y^{-2} does not depend on the value of t.
- 5. Determine which of the following numbers is larger without using a calculator, $\frac{15^{16}}{16^{15}}$ or $\frac{20^{24}}{24^{20}}$. (Hint: We can compare two positive quantities a and b by computing the quotient $\frac{a}{b}$. If $\frac{a}{b} > 1$, then a > b. Likewise, if $0 < \frac{a}{b} < 1$, then a < b.)

Extension:

- 6. One of two numbers can be represented by the rational expression $\frac{x-2}{x}$, where $x \neq 0$ and $x \neq 2$.
 - a. Find a representation of the second number if the product of the two numbers is 1.
 - b. Find a representation of the second number if the product of the two numbers is 0.