

Lesson 13: Mastering Factoring

Classwork

Opening Exercises

Factor each of the following expressions. What similarities do you notice between the examples in the left column and those on the right?

a.	$x^2 - 1$	b.	$9x^2 - 1$

c. $x^2 + 8x + 15$ d. $4x^2 + 16x + 15$

e.
$$x^2 - y^2$$
 f. $x^4 - y^4$

Example 1

Write $9 - 16x^4$ as the product of two factors.



engage^{ny}

S.64

ALGEBRA II

Example 2

Factor $4x^2y^4 - 25x^4z^6$.

Exercise 1

1. Factor the following expressions:

a.
$$4x^2 + 4x - 63$$

b. $12y^2 - 24y - 15$

engage^{ny}

S.65

Exercises 2–4

Factor each of the following, and show that the factored form is equivalent to the original expression.

2. $a^3 + 27$

3. $x^3 - 64$

4. $2x^3 + 128$

S.66

Lesson Summary

In this lesson we learned additional strategies for factoring polynomials.

- The difference of squares identity $a^2 b^2 = (a b)(a + b)$ can be used to factor more advanced binomials.
- Trinomials can often be factored by looking for structure and then applying our previous factoring methods.
- Sums and differences of cubes can be factored by the formulas
 - $x^{3} + a^{3} = (x + a)(x^{2} ax a^{2})$ $x^{3} - a^{3} = (x - a)(x^{2} + ax + a^{2}).$

Problem Set

1. If possible, factor the following expressions using the techniques discussed in this lesson.

a.	$25x^2 - 25x - 14$	g.	$9x^2 - 25y^4z^6$
b.	$9x^2y^2 - 18xy + 8$	h.	$36x^6y^4z^2 - 25x^2z^{10}$
с.	$45y^2 + 15y - 10$	i.	$4x^2 + 9$
d.	$y^6 - y^3 - 6$	j.	$x^4 - 36$
e.	$x^3 - 125$	k.	$1 + 27x^9$
f.	$2x^4 - 16x$	I.	$x^3y^6 + 8z^3$

- 2. Consider the polynomial expression $y^4 + 4y^2 + 16$.
 - a. Is $y^4 + 4y^2 + 16$ factorable using the methods we have seen so far?
 - b. Factor $y^6 64$ first as a difference of cubes, and then factor completely: $(y^2)^3 4^3$.
 - c. Factor $y^6 64$ first as a difference of squares, and then factor completely: $(y^3)^2 8^2$.
 - d. Explain how your answers to parts (b) and (c) provide a factorization of $y^4 + 4y^2 + 16$.
 - e. If a polynomial can be factored as either a difference of squares or a difference of cubes, which formula should you apply first, and why?
- 3. Create expressions that have a structure that allows them to be factored using the specified identity. Be creative, and produce challenging problems!
 - a. Difference of squares
 - b. Difference of cubes
 - c. Sum of cubes

S.67

engage